
7 D-R125 686 EXTREME 
VALUES OF NON-STTIONRY 

SEQUENCES AND THE 
/

I EXTRENAL INDEX(U) NORTH CAROLINA UNIV AT CHAPEL HILL
I CENTER FOR STOCHASTIC PREC. J HUSLER OCT 82 TR-28

UNCLASSIFIED AFOSR-TR- -3 I74 F49620-82-C-0889 F/G 12/1 N

mhhhhhhhFENi
SNIHEHEL



111 1.0 Ll 5 21118. L2.
Wo iI~

MICROCOPY RESOLUTION TEST CHART
NAT IONAL BUREAU OF STANDARDS- 1963-A

. .. . . . . .



AFOSR-TR- 83 -0 0 74

CENTER FOR STOCHASTIC PROCESSES

Department of Statistics
University of North Carolina
Chapel Hill, North Carolina

EXTREME VALUES OF NON-STATIONARY SEQUENCES AND ilIE EXTREMAL INDEX

by

Jifrg Hasler

TECHNICAL REPORT #20 4

October 1982 ~ ~~

Approved for pnib7 ir? recacno;

__ 
ditrbuio ul*itd

''b -'



REPORT DOCUMENTATION PAGE______ RI( rt'..TN IM

I RPORT NUMBE.R GUTACLI IO o" "0 60PIF %?5 CAT ALO 01 UMIIE R

AFOSR-TR. 8 3-0 0 7_ ___ _ _ _

4. TITLE (ad SubtIffe)I I 0 1,1P R 411110CO E D

EXTREME VALUES OF NON-STATIONARY SEOIJENCEiS AND) ll1F Technical
6 F'I.I1 011141G 01G, IIESNOR tIUMUjEf

7. AUTHOR(*) IN0 CONTRAC OR GRANT NUMBER(-

Jiirg Hi~sler F49620&-82 -C-0009

9. PERFORMING ORGANIZATION NAMF AND ADDfIt F5 10. PROGRAM ELEMENT. PROJECT. TASK
AREA 6 W'RK UNIT NUMBERS

Department of Statistics
University of North Carolina
315 Phillips Hall 039 A Chapel Hill, NC 27514

1I. CONTRO LIN 1 FFICE NANME AND ADDRESS 12 REPORT DATE

AFOSRA/,4fOctober 1982
Bollitg AFB13 NUMBER OF PAGES

Washington, DC 20332 _______ 16
14. MONITORING AGENCY NAME A ADDRFSS(,I f~ t, , t ...f,~i Ill. ff IS SECURITY CLASS. (of this t-portj

UNCLASSIFIED
Io ttFC.L Ai5ICA-ION DOWNGRADING

.,(III DULE

16. DISTRIBUTION S7ATEMENT (of (hi,.I'''

Approved for public rjrlease-- distribution unlimited.

IS. SUPPLEMENTARY NOTES

419. KEY WORDS (Contiut,,. on reverse stiv It~t~ ne .'mm IV O i b~,IIy A~e, ..... ",

Extremes, non-stationary processes

20. ABSTRACT (Confiritir o.n reverse Aide it ,,,,sf 1,i''rfy- hy hIm ., s .

The conditions used to generalize the extreme value theory for stationary
random sequences to non-stationary sequences are studied with respect to their
necessity. We find that the e~tremal index, defined in the stationary case, plays
a similar role in the non-stationary case. The details show that this index

o describes not only the behavior of excecdances above a high level constant
boundary, but also above a non-constant high level boundary.

DD I ON7 1473 EDITION ofI NOV f-S 1S OI1,O(LUI E. UNCLASSI1 PED

sFcURITV C -A-,,IF I TION -OFT~ils PAGE (mi47.. not& Enteed)



EXTREME VALUES OF NON-STATIONARY SEQUENCES AND THE EXTREMAL INDEX

by

Jurg Hfisler*

University of Bern
and

University of North Carolina at Chapel Hill

" 4

Summary: The conditions used to generalize the extreme value theory for stationary
random sequences o non-stationary sequences are studied with respect to

their necessity. '.e find that the extremal index, defined in the station-
ary case, plays a similar role in the non-stationary case. The details
show that this index describes not only the behavior of exceedances above
a high level constant boundary, but also above a non-constant high level
boundary.

Keywords: Extremes, non-stationary processes.

T C:

T.R FOT c) 7 - ' TTFT rPT .. "

:<:-, .-. . .... '.: 193-12. &
4

*Research supported by the Air Force Office of Scientific Research Grant No.

AFOSR F49620-8tOOO9.

This research was done while the author was at the Center for Stochastic Processes
at Chapel Hill. The author wishes to express his gratitude to Chapel Hill for the
financial support and hospitality.

I "um - -'



1. Introduction.

Let fXi,ial} be a random sequence with identical marginal distribution P(x) =

P{Xi  x1 for all i. We deal with the approximation of probabilities of the type:

P = P{X. : u . , i5nI
n 1 nl

as n + , where {U , i-n,n:l} is considered as the real-valued boundary.

In the case u ni un for all i ! n, this probability gives the distribution of

the partial maxima M = max{Xl,..., X 1. The classical extreme value theory dis-
n n

cusses the possible asymptotic distribution of M as n ', where X. are i.i.d.
~n 1

K r.v., i.e.,

P{a n(M n-b n ) x} = [F(u n(X))]n - G(x)

where G(x) is one of the three known extreme value type distributions and a ,b
n~pn

norming values, u (x) = x/a + b
n n n

It was shown that the same result remains true even if X. is a stationary se-

quence satisfying weak dependence restrictions (see e.g. Leadbetter [3] or Lead-

better, Lindgren and Rootz6n [5]). To prove this result it was shown that

P{M x/a n+b n [F(u n(x))] + o(I)

The same argument was used for the general case of a non-stationary random sequence,

i.e. it was shown in [2] that

n
S(1.1) P{Xi!u n,in'n = IT F(u ni) + o(1) as n +

i=l

under suitable conditions.

We remark that the studied probabilities covers also the extreme value case for

*" non-stationary sequences, by transforming P{M u I into P{X. S u 1. Moren n 1 n!

detailed, e.g. if X. is any normal non-stationary sequence, with i. = EX.
1 1 1

S= Var X. =max{X X}, te
1 1' n I''then
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P{M nu } = P{X 5u ,ign} = P{(! -1 ) / :5, (u -Pi)/ai,isn}

= P{X i ! uni i9 n}
L'.

where uni = (u - pi)/o, F(x) = D(x) the standard normal law and X. a standardized
fl 1 1. 1

normal non-stationary sequence.

Define x0 = sup{x: F(x)<l} and let F(x0 -) = 1. We suppose throughout the

paper that umin = u min (n) = min{u ni,i~n} -* x0 as n c o. Furthermore we restrict

our attention to the interesting case where F(u ni) tends to a value different from

*0 or 1.

The sufficient conditions used in proving (1.1) are as follows:
n

Condition A: Let Fn=FnU = n) with F(x) = 1 - F(x). Then assume
C A LF = ni

(1.2) limsup Fn < and liminf F > 0
n-o nn.

The dependence restrictions are

Condition D (=D(u.)): For any integers 15il<i2 < .. <ip<j !5n for which

- ip m, let I = {iP,Z=l,.., p}, J = {jte=l,...,q}, B(I) = {X. u i'T} and

similar B(J). Then we assume sup IP(B(InJ)) - P(B(I)) • P(B(J))j 5 a where
I,J n,m

a 0 as n for some sequence m* such that
n,m* n

~n

(1.3) m* F (u .in - 0 as n

n min

Condition D' (=D'(u i)): Let n,r be integers and I a subset of {n).... ni of the

form {i1i~i 2} such that I F(u ni) F n/r. Then assume that
iEI

* (1.4) max min P{X.>u .,X.>u .} a*1 niI j nj n,rI I*CI ijI

such that

(1.5) lim limsup r a* = 0
6 r-w n- n,r

l6
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where the min in (1.4) is considered on subsets I* of I with

(1.6) -(Uni) g(r)/r for all n 2 n0 (r)

icI-I*

and g(r) 0 as r

These conditions are sufficient for (1.1) (see Theorem 2.2 of [2]) and in addition

we got that if

(1.7) F + T as n-*
then

(1.8) p e as n for T > 0

The purpose of this paper is to discuss the necessity of the three conditions. In

Section 2 we show mainly that the conditions D and D' with (1.8) imply (1.7). In

*Section 3 we assume only the Condition D and (1.7) and find that the possible limits

of P may still be described. This gives us the relation to the stationary case of
n

* the extreme value theory and to the extremal index, defined in this context by Lead-

better [4].

2. Necessity of Condition A.

We consider in this section the equivalence of (1.7) and (1.8) if the conditions

D and D' hold for a given random sequence {X.} and a boundary {uni}. Since we have

shown in [2] that (1.7) implies (1.8), it remains to prove the converse. It suf-

f fices to prove only that liminf Fn > 0 and limsup Fn < - , since by the first part

-nn
of Theorem 2.2 [2]: Pn - e n o(1), which implies (1.7) by (1.8). This proof

uses the same technique as in [2]. Since the same technique is used also in Sec-

tion 3, we mention some of the results of [2] in detail.

Lemma 2.1. Let n,r be fixed integers and 11,... , Ir interals of {1..., n1 such

that I. and I. are separated by at least m for i # j. Suppose Condition D holds1 3

for a given boundary {uni}. Then

r r
IPC n B(Ii)) _ f P(B(IM)) !c r a

i=1 i=l n,m
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We use the following construction. Split the set {l,..., n} into intervals It,

t = I,..., r, such that I = (1,..., i1} with

ii

F = F(Un) F /ri=l 1 n

-. and F +F(Un >F
nl ) > Fn/r

(i.e. i1 is chosen as large as possible). Let 12 = {i +l,.... i } such that
2 1 2

i2
F = F(uni) < Pn/r

.i =ill

* with i2 maximally chosen. By repeating this procedure r times, we find intervals

If with i -< n

( (2.1) F = F(u ni) < F /r
CIn

* and
i

r r
(2.2) t= F n(Uni < neli= l--1 n

Furthermore let 0 < E:-< 1. Split each interval I into two subintervals I and

It,2 where

t,2 t{i-mzi,...,

contains the last mepoints of is, 1I the remaining points such that

SF(u ni) - Fn e/r
iEIZ,2

and m. is maximally chosen.

We proved in [2] that since F(u min) 0 as n

(2.3) m1 + 1 F /r. (umin)



* l in1 = , , • . . . . . -. .

S

* Lemma 2.2. If s = c(n) with

(2.4) E(n) *Fn -.0 as n '

*then for any integer r

rP Pn f X i<UniEulI 0 as n =

z=l

* Proof: We have
r n

0 P{X._<u 5 iuIE }- P < 1 1 T(Un)+ I
1 ni' n 1=1 in, 2  i=ir+1 ni

. The first term is bounded by r • e(n)F /r = c(n) - F -+ 0, using the construction
n n

of I ,2 and (2.4). A simple argument showed in [2] that the second term is bounded

by r F(U.) mi 0 as n - for all r.

Lemma 2.3. i) (1.8) implies liminf F > 0
n

ii) c(n) =(m*+l)F(u .i)r/Fn 0 and satisfies (2.4), where m* is

given by 
Condition 

D.

* Proof: i) Since P = 1 - P{i: X.>u .} 2 1 - F we have F > 1 - P , butn 1 ni n n n-T
P e < 1. Thus liminf F > 0.
n n

ii) The given £(n) satisfies

c(n) - F = (m*+l)F(u in) • r - 0 for any r by Condition D.
n n min

By i) we have c(n) -< K • (m*+l)F(u .n) • r - 0 for a suitable constant K.* n Mmin

Lemma 2.4. If (1.8) , Condition D and D' hold, then limsup F <

n

Proof: Lemma 2.1 and 2.2 with the chosen E(n) imply that

limsup pn - IP(Bz,1 0 as r

with B = B(Ie,) Thus by using (1.8) and log(l-x) < -x, it implies

r
(2.4) limsup I (1-P(Bz 1)) < K for any r.~n- Z=I

I
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We proved in [2] the inequality
r r

(2.5) S : F(u i) > I(l-P(BI)) Sn -g(r) r a*.- "n,r t=I £ II  t=l ~ n,r

by using Condition D'.

As in Lemma 2.2 we find

(2.6) F ! S + E(n) F(u n) + rF(u. )
n n,r in mnn

Finally, combining (2.5) and (2.6) and using (2.4) gives the desired result. 0

Thus we proved
Theorem 2.5. Let {Xi,il} be a random sequence with identical marginal distribution

F(x) and {u n, in,n>l} a real-valued boundary. Assume that the conditions D and D'

hold together with umin x0 asn Then forT>0

F rT as n-*
n

is equivalent to

P = P{Xi!u n,i-<n} - e as n oD

Next we state an easy consequence of Theorem 2.5 for the case where we consider
only a subset of {l,. n} in the probability P .

Corollary 2.6. If in addition to Theorem 2.5, In c n} such that

(2.7) F n(In = R u i  T, as n T' 5 T,
iCI

% n

then P n(I): P{Xi-5u niiEI n e as n - co.

Proof: It remains to prove that the Condition D and D' hold with respect to the

"new" boundary

ni n
Uni

Condition D holds for ui , since B(I) = {Xi< ni,iEI = B(InI n) for any I c {l,..., n)

and F(U min) < (umin ). Condition D' holds in an analogous way: Let I be a subin-

terval of f1,..., n} with ) F(u.) <- F n(I n)/r. Then also Y F(uni) =

i6I ic I
F(uni) < Fnr. Thus there exists a subset I* satisfying

ielnl
n

( 2 .,°,) 1 P {X i > n X> Unj y u ) g CL*

i<j6I* 1 ni nj n,r
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by i1(uni). But the l.h.s. of (2.8) is larger than
ni

P{X.>u .,X.>u .1=~ P{X.>U .,X. Z.n! i<jEI*nl 1 nli J i<jeI* 1 nli J
!..- n

* Since also T F(Un.) < F(uni), the condition D'(uni) holds with the same
iCI-I* iEI-I* ni ni

values a* and g(r).n,r

*From this it is obvious that the Poisson limit result in [2] for the number of ex-
ceedances N (I) = #{iEI: Xi>Un}, with I = {i,..., n1, generalizes for any se-

n in

quence of subsets IA i.e.

N (I ) has an asymptotic Poisson distribution
n n

with parameter T', if (2.7) holds in addition

to the Condition D, D' and (1.7).

3. Results under Condition D.

With the construction and results of Section 2 we discuss now the asymptotic

behavior of P without assuming Condition D'. In the stationary extreme value casen

it was shown by Leadbetter [4] that if u n(T) is such that (1.7) holds and the Con-

dition D is satisfied for a particular u n(T ), T > 0, then there exist constants

S0,e', 0 < e < '-< 1 such that

limsup P{X.<u (T),icn} = e-OT1 n
(3.1)

liminf P{X<u n(T),i_<n} = e-0'r

nin

for all 0 < T < T . The notation un(r) u indicates the value r used in (1.7).

we remark that in the constant boundary case u n(T) in (3.1) is defined by e.g.

Un(T) = U[nT 0/T(T 0); then un(T) satisfies (1.7) for any T>0. Analogously we de-
fine now uni(T) for any 0<T<-T0 , if Uni(T0 ) satisfies (1.7) for a T0>0 as follows:

(3.2) 
u ni(T) =

xn s<i<n
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where s is maximally chosen such that F(U ( 0)):FnT/T0 . Naturally,
i:5s

SF(Uni ())-T , as n + , since UminX0* If P converges, then the value 0 in.. i~n n m nn

*" (3.1) is called the extremal index, thus denoted generally

o = -log lim P{X :u (T )i5u}/0
E ni 0O'

* in the stationary case with a constant boundary (3.1) shows that 0 does not de-

pend on T Since we do assume neither the stationarity of the random sequence

nor the constancy of the boundary, we expect a greater variety of properties of

0 as a simple example indicates.

Let Y1,Y be an i.i.d. sequence with continuous marginal distribution F

and normalization u n(T) F (T/n),T>O. Let

•~~ Xi = Y[(~)2,~

Then it is easily checked that P{X. u (T),i5n) + e-T/2 as n T , > 0. Thus
i n

0 = 1/2 for the fixed level boundary. Take now e.g.

I Un(2T) for i oddUni ( T n
ni for i even

where x0 is again the endpoint of F. Naturally F(Uni(T)) T • and
isn

P{X~u (T)i~f P{. un+l _T
PX i Uni !5nj = P{Y!Un (2T),iS[-- } e

Thus 0 =1 for this particular boundary. By defining other boundaries u*. in ani

similar way, fixed for some i's and equal to x0 for the remaining i's, we find

other values e<I. The same fact holds even if we define X. to be stationary by1

P{Xi=Y [(i+l)/2 1,il} = P{Xi=Y[i/2]+ 1 i l} = 1/2. For the same random sequence we

show that 0 may even depend on the given value T for a non-smooth boundary.

Let I un(2T 0) i odd,i5n/2

u ni(T 0 J X0  i even,i~n/2

Un (T0) n/2<in
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Then the obvious calculations show that (1.7) holds with T0>0 and e e(uni(T0))=3/4 .

But for TT 0/2 we have sfn/2 in the definition (3.2) and thus 0 = 0(u= 1.But 0Uni()

This shows that for particular stationary and non-stationary sequences the pos-

sible parameter 0 depends strongly on the given boundary; i.e. e = (uni. This
ni

dependency is not restricted to a particular extremal index 6 = (u (T)) = 1/2 as

in our example, for we may replace in the above example the i.i.d. sequence Yi by

sequences Y. given in Chesnick [1], Rootzen [7] or de Haan in Leadbetter [4], where
1

q0 = O(u n(T)) may be any value 5 1.

On the other hand it is obvious that for i.i.d. sequences, we find the same

parameter 0 = 1 for any boundary values satisfying (1.7), for any value T > 0. The

following result shows that this is not only true for i.i.d. sequences.

Theorem 3.1. Let {Xi,itl} be a Gaussian sequence with identical marginal distribu-

tion 4(x), the unit normal law. Assume that the correlation function r(ij) satis-

fies

(3.3) max Ir(i,j) llogn - 0 as n - .li-i l-

then P{Xiu ni(T),i!n} - e as n - , T > 0

where u ni T)} is any boundary satisfying (1.7) for any value T > 0. Thus 0 = 1

for any boundary.

The proof of this result is mainly given in Hisler [2]. This is a particular

case of the more general statement in Corollary 2.6, since (3.3' implies D and D'

for any boundary. From this one might argue that if 0 = 1 for a certain boundary,

then 0 = 1 for any boundary as long as D holds. But the above example indicates

that this is not true in general, and also that the stronger condition D'(uni2 does

not imply D'(u*) to hold for any other boundary u*
nin i

In the following we discuss some properties of the extremal index for gencral

cases. The first result shows that 0 cannot be larger than 1.
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Lemma 3.2: Let {X,i->l} be a random sequence with identical marginal distribution.
P1

If (u i) satisfies (1.7) for some value T>O and D, then

* niliminf P{Xi<Unipi5n > e

1n-*n

Proof: We use the technique of Section 2 to define intervals I., £=I,.... r for

r,n fixed. Then we know that

r
P{Xi5u -isn} - H P(B(If)) 0 as n-*o

But P(B(Iz)) > 1 - Z F(uni) I - T/r as n by the construction of the I's.
iE ni

Thus liminf P{X.-<u .,in} (l-T/r)r  e T as r - c n-1 fl
n-o

Now we prove that the extremal index, if existing, is equal for boundaries, which

differ only slightly from each other.

Lemma 3.3: Let {Xi,il} and (u n) be as in Lemma 3.2 with T > 0. Let {u*.} be
1 ni i

another boundary satisfying (1.7) with the same value T. If for each n either

u . 5 1*. V i:n

(3.4) 
or ni n l

u . ! u*. V i_<n
ni ni

then i) Condition D holds also with respect to u*.
* ni

ii) If e = e(uni) exists, then 0(u*) = 0
ni ni

Proof: i) Similar to the proof of Corollary 2.6 it is sufficient to show that

P(B(I)) - P(B*(I)) -+ 0 as n - o for any Tc{l,..., n1 where B*(T) = {Xi.u*i,iE1T .

* i ni

But using (3.4) we have

n

- P(B*(I))P(B(I)) <- (F(u n)-F(u* ) - v (F(un) _F(Un
icl ni ni i=l ni ni

which tends to 0 by (1.7), if un. u*.. The converse case holds in the same way.
"i ni

ii) This follows as in i) by setting I = 1..., n}, without use of Condi-

tion D.

S . - -



*. This indicates that there are classes of boundaries having the same extremal in-

dex, in case of existence. We give a description of such a class, more general

than (3.4).

K: Let {uni} be a given boundary. Then for another boundary {u*i} define
n n

S= {i<n: u .<u* I and assume that either
n n. ni

(3.5) F(Uni) = o(1) or I F(*.) = o(1)
iEn n

Theorem 3.4. Let {X.,i-!l} be a random sequence and {u ni(T)} a boundary satisfying

(1.7) and T>O. Let fu*(T)} be another boundary satisfying (3.5) and (1.7) for
i

the same value T. Then

i) If D(u ) holds, then also D(u*.)

ii) If e = O(u n) exists, then 6(u*) =
ni n

Proof: Define in the case 7 F(Uni) = o(i)
VId ni

u*. nE

Uni0 = o iin

By the assumption (3.5)

0 5 1 T(u*.) - ~F(ii ) Fu.) 001)
i! n ni i<n n i UI n

Thus (f n) satisfies (1.7) with T. By Lemma 3.3, Condition D(ani) holds and
ni i

0(ii ) =0, since u- .Uni, for all in. But also an .u*. for all i_<n, thus the
ni ni ni' ni ni

two statements of the lemma follow by using Lemma 3.3 again with 6 . in place of

u ni The proof for the case I F(u ni) o(1) is similar, by defining
iEl n

U ni nU ni : x0  it. I

We now give a sufficient condition for the existence of the extremal index

with respect to a smooth boundary. This generalizes the condition D'.
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:(k
i <i 2< .. <i k I 1 1 2 2 k k

Then assume that for a value e, o<e<l

(3.6) limsup max min Irs(2) (I*)- 0 (1-) l -0 as r
n4 I 'IncI

and

limsup max min rS (3) I*) 0 as r
n-) I I* n

where the max on I is taken over intervals I = { ii } c {1,*... nI with
1 2

S/r-F(U ) F(un ) < Fn/r and where the min on I* is taken over subset

n min . ni n1i I
I*cI such that S ( 1 )(I - T*) = F(un.) < g(r)/r for all n -> no(r),g(r) O as r-*o.

iEI-I*

Theorem 3.5. Let {X.,i>-l} be a random sequence with identical marginal distribu-

tion and {u .I a boundary satisfying condition D, (1.7) and (3.6) for a 0 and a

nniT 0>0. Then 0(u ni (T)) = e for all 0<'r-T'r0 where u ni (T) is defined in (3.2).

Proof: We prove first (uni (T)) = 0. Define as in Section 2 for n,r fixed the

intervals I = r. Condition D implies again that

r
Pn TZ= P(B(Iz)) - 0 as n

Now for each e, there exists a I* such that

4 0 -< P(B(I)) - P(B(Ie)) < Sn(I-I*) g(r)/r

for all n:no(r) and by Bonferroni's inequality
%0

P(B(I*)) - 1 - Sl)(I*) +n

r(B(1*)) -I - S(13(I*) + S(2) (I) (3)

n€
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Thus

1 0 limsup max minjS (2) (I*)- o -limsup max min S(3) I*)- g(r)
r n-. I I* nf I * n r

"_!5 liminf P(B(I) -< limsup P(B(I,) )

n-),o  n

< - + limsup max min[S 2)(I*) 1+ g(r)/r< r n->OD I I* nr

By the assumption (3.6) we have that

T0o(1) rr r

(- r ) < liminf IT P(B(I)) < limsup IT P(B(It))
n-)m t=l n-*-t~

~~OT oO(1).)
(1 _0 r

-e T0

where o(1) 0 as r + >. Thus by letting r we have limr Pn e
n-*o

ii) Let the sets It be as in i) depending on TO; denote by r" = [Tr/o]. Then by

the definition of s in (3.2)

Ifc{1,..., S} = JC: rU~l

But 0 : P(B( ri)) _ P(B(.)) -< S(1)(Ir, l) -< Fn/r -* 0 as r

The proof in i) shows that

(1- 0 0 0( ) rI r' P B

010+0()

r

Thus for r + o we find by combining the above facts that

-OTlrn P{Xi<-Uni(T),i <n} = lrn P(B(,J)) = e . F
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We remark that we might use instead of u .(T) defined in (3.2) any other
ni

boundary u*.(T), which is equal to uCT ) on a certain interval J' and equal
ni Uni 0

L to x0 on the complement of J', where J' such that S~l)(J') - F T/T
0n n 0*

This theorem generalizes the result (3.1) known for stationary random se-

quence with a constant boundary to non-stationary sequences with respect to a

* non-constant, but smooth boundary. Together with Theorem 3.4 we know now that

the extremal index 0 O (Un) defined in the case of stationarity with a constant
n

boundary holds to be the same value for a class of non-constant boundaries,

which differ slightly (depending naturally on the finite-dimensional distribu-

*tions) from the constant boundary.
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